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Introduction

Objects: MU(p), En, BP〈n〉
Ingredients: Adams operation on MU(p) (stable Adams conjecture),
Adams operation on En (Hopkins–Miller)

Goal: Constructing a locally unipotent Adams operation on BP〈n〉
that is compatible with the Adams operations above
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Theorem (5.4, Burkland–Hahn–Levy–Schlank)

The (E1⊗A2)-MU(p)-algebra underlying the E3-MU(p)-algebra BP〈n〉
admits a lift

BP〈n〉Ψ ∈ AlgE1 ⊗A2
(Mod(SpB Z;MUΨ

(p)))

such that

there is a map ι : BP〈n〉Ψ → EΨ
n in AlgE1

(Mod(SpB Z;MUΨ
(p))).
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Theorem (BHLS (cont.))

an identification in AlgE1
(SpB Z):

LT (n) BP〈n〉Ψ
ι !!

∼=
""

EΨ
n

∼=
""

(EΨ
n )hµpn−1⋊Gal(Fp) !! EΨ

n

where µpn−1 ⋊ Gal(Fp) fits into

µpn−1
! " !!

" #

""

µpn−1 ⋊ Gal(Fp) !!
" #

""

Gal(Fp)

∼=
""

Sn !
"

!! Gn
!! Gal(Fp)

the underlying Z-action on BP〈n〉 is locally unipotent in p-complete
spectra after p-completion.
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Outline of the construction

Refine the E3-algebra structure on En to an E3-MU(p)-algebra
together with a E3-MU(p)-algebra map:

ι : BP〈n〉 → En.

(Theorem 5.9, Theorem 5.10)

Use the self-centrality of En and universal property of center to show
that the E3-MU(p)-algebra structure on En corresponds to an
E4-algebra map MU(p) → En. (Theorem 5.12, 5.13)

Base case: Show that the underlying E3-algebra map of the
E4-algebra map MU(p) → En can be refined to a Z-equivariant
E3-algebra map MU(p) → En, so EΨ

n lifts to a Z-equivariant
E2-MU(p)

Ψ-algebra. (Theorem 5.16)
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Induction: Refine the E1-MU(p)-algebra of BP〈n〉 to

BP〈n〉Ψ ∈ AlgE1
(Mod(SpB Z;MU(p)

Ψ)).

and extend ι : BP〈n〉 → En to a Z-equivariant map between
E1-MU(p)

Ψ-algebras. (Theorem 5.29)

Lift the underlying E1⊗A2-MU(p)-algebra of BP〈n〉 to

BP〈n〉Ψ ∈ AlgE1 ⊗A2
(Mod(SpB Z;MU(p)

Ψ)).

(Theorem 5.33)

Use the fact that Φl ∈ Gn is central to show that the Adams
operation and taking the homotopy fixed point commute + prove
local indempotence.
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Adams operation on MU(p) and En

Construction (Adams operation on En)

Let l = 3 for p = 2 and l = 2 for odd p for this talk. Let
Ψl ∈ Gn : En → En that arises from the Z×

p -action on the chosen formal

group of height n over Fp, such that it acts on π2k(En) by lk .

Construction (Adams operation on MU(p))

The stable Adams conjecture gives us

BU(p)
Ψl

!!

J ##❑
❑❑

❑❑
❑❑

❑❑
❑

BU(p)

J$$"""
""
""
""
"

BSL1(S(p))

Taking the Thom spectrum, we get an Admas operation on MU(p).
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Notation

The category Mod(MU(p)
Ψ; SpB Z) has objects

{(X ,ΨX ) : X ∈ SpB Z ∩Mod(MU),MU(p)-module map
ΨX : X → Ψ∗(X )} and morphisms f : X → Y are commutative
diagrams of MU(p)-module maps

X

ΨX

""

f !! Y

ΨY

""
Ψ∗X

Ψ∗f !! Ψ∗Y

S(p)(j): invertible object in p-complete spectra where Ψl acts by

multiplying by l j on π0(S(p))×.
MU(p)(j) = MU(p)⊗Sp Sp(j).
Sn,[l ]: sphere with a degree-l self map.
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E3-MU(p)-algebra structure on En

We have a classical result that there is an isomorphism

LT (n) BP〈n〉
∼=−→ (En)

hµpn−1⋊Gal(Fp),

and our goal here is to define a MU(p)-module structure on En. In the
construction of BP〈n〉, we define MU(p)[y ] as the Thom spectrum of

N pn−1−−−→ Z → Pic(MU(p)).

Analogously, we define MU(p)[y
1/(pn−1)] as as the Thom spectrum of

N 1−→ Z → Pic(MU(p)).
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We define

BP〈n〉[v1/(p
n−1)

n ] := MU(p)[y
1/(pn−1)]⊗MU(p)

BP〈n〉

and we obtained a E3-MU(p)[y
1/(pn−1)]-algebra.

Lemma

The commutative algebra map

W(Fp)⊗MU(p)[y
±1] → colimk W(Fpk )⊗MU(p)[y

±1/(pn−1)]

is a µpn−1 ⋊ Gal(Fp) pro-Galois extension.

Proof. (sketch)
Lifting the µpn−1 ⋊ Gal(Fp) pro-Galois extension on homotopy groups.
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Proposition

There is an identification of underlying E3-algebra

LT (n) BP〈n〉 !!

∼=
""

LT (n)(colimk W(Fpk )⊗ BP〈n〉[v1/(p
n−1)

n ])

∼=
""

(En)
hµpn−1⋊Gal(Fp) !! En

Proof. (sketch)

The homotopy group of LT (n)(colimk W(Fpk )⊗ BP〈n〉[v1/(p
n−1)

n ]) agrees
with a Lubin–Tate theory, so it agrees as an E3-algebra with a Lubin–Tate
theory, which is En as there is one formal group over an algebraically
closed field up to isomorphism.
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Therefore, we obtain a refinement of the underlying E3-algebra structure
on En to an E3-MU(p)-algebra structure and a map of E3-MU(p)-algebra:

ι : BP〈n〉 → En.
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The Z-equivariant E2-MU(p)-algebra structure on En

It’s a fact [Lur17, Section 5.3] that for for an Em-algebra R , its center
ZEm(R) is the terminal Em+1-algebra A such that R lifts to a
Em-A-algebra. Explicitly, we have that R lifts to a Em-ZEm -algebra, and
for any Em+1-algebra B such that R lifts to a Em-B-algebra, there is a
corresponding Em+1-algebra map B → ZEmR .

Proposition

The Em center of En is isomorphic to En for m ≥ 2.
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Therefore, the structure map of E3-MU(p)-algebra:

f : MU(p) → En

corrsponds to a map of E4-algebra:

f̄ : MU(p) → ZE3En
∼= En.

Our goal is to refine EΨ
n to a Z-equivariant E2-MU(p)

Ψ-algebra from the
E3-MU(p)-algebra structure on En, so it suffices to refine the E4-algebra
map ῑ to a Z-equivariant E3-algebra map

MU(p)
Ψ → EΨ

n .
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Proposition

The underlying E3-algebra map of any E4-algebra map f̄ can be refined to
a Z-equivariant E3-algebra map

MU(p)
Ψ → EΨ

n .
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Proof. (sketch)
By [ACB19, Theorem 3.5], the space of E4-algebra map f̄ is isomorphic to
the space of nullhomotopies of the composite

BU(p)
J−→ BSL(S(p)) → BSL1(En)

in the category of 4-fold loop maps, which is then equivalent to this space
of nullhomotopies in pointed spaces of the composite

B4BU(p)
J−→ B5SL(S(p)) → B5SL1(En).

We prove this theorem by showing that every nullhomotopies of this
composite can be refined to a Z-equivariant nullhomotopy of the
composite

B4,[l2]BU(p)
J−→ B5,[l2]SL(S(p)) → B5,[l2]SL1(En).

Applying Ω4,[l2] to the sequence above, we get a a Z-equivariant
nullhomotopy of the composite in the category of 3-fold loop maps as
S4,[l2] = S3,[0] ∧ S1,[l2].
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Corollary

The E3-MU(p)-algebra structure on En can be used to refine EΨ
n to a

Z-equivariant E2-MU(p)
Ψ-algebra.

Gabrielle Li (Telescope Conjecture Learning Seminar)Constructing an Adams Operation on BP〈n〉 July 20, 2024 17 / 35



E1-Cell Theory

Definition (Connective algebra)

For a stable, presentably symmeytric moinodal category C, an algebra
object A ∈ Alg(C) is called connected if A is connective and
π0(A) = π0( ). Let Alg(C )≥1 denote the connected algebra object in C.

Definition (Functor H)

We define H to be the composite of

Alg(C )≥1 ⊗π0−−−→ Alg(Mod(C;π0( )))
Σ∞
−−→ Mod(C;π0( )).

Concretely, we have

H(A) = fib(A⊗ π0( ) → π0( )⊗π0(A) π0( )).
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Example

H( {X}) ∼= X .

Take C = Mod(MU(p)), then π0( ) = π0(MU(p)) = Z(p) . It is
calculated that π∗(H(BP〈n〉)) is torsion-free, finitely generated, and
concentrated in positive odd degrees.

fib(H(A
!

B) → H(A⊗ B)) ∼= H(A)⊗π0( ) H(B).
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Lemma (E1-celullar approximation)

Let f : A → B be a map in Alg(C)≥1 and let

H(A) = M0
m1−−→ M1

m1−−→ M2 → · · · → M∞ = H(B)

be an increasing filtration such that

mi is ki -connnective for a non-decreasing sequence ki with k1 ≥ 0,

for each i ≥ 1, there are objects Xi ∈ C≥k such that
Xi ⊗ π0( ) ∼= fib(mi ) and [Xi ,Y ] = 0 for any (ki + 2)-connective Y .
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Lemma (E1-celullar approximation, cont.)

Then there exists a filtration in Alg(C)≥1:

A := R0
r1−→ R1

r2−→→ · · · → R∞ → B

such that

the map Ri → B is ki+1-connective,

the functor H sends {Ri} to {Mi},
each Ri is built as a pushout

{Xi}
aug !!

"" ""
Ri−1

ri !! Ri

the map R∞ → B is ∞-connective.

Gabrielle Li (Telescope Conjecture Learning Seminar)Constructing an Adams Operation on BP〈n〉 July 20, 2024 21 / 35



We apply this lemma to the category of MU(p)-module spectra. Using
above examples, we will see shortly that it’s relatively easy to construct a
filtration on the homology level H (as a split Posnikov tower where we
know what the fibers are) that satisfies the connective and coconnective
hypothesis. We want to obtain a filtration on the spectrum level, which
allows us to extend the Z-equivariant structure level by level from MU(p)

to BP〈n〉 via taking pushout.
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BP〈n〉 as a Z-equivariant E1-MU(p)
Ψ-algebra

Proposition

The underlying E1-MU(p)-algebra of BP〈n〉 lifts to

BP〈n〉Ψ ∈ Alg(Mod(SpB Z;MU(p)
Ψ)).

and ι : BP〈n〉 → En respects the Z-equivariant E1-MU(p)-algebra structure.

Gabrielle Li (Telescope Conjecture Learning Seminar)Constructing an Adams Operation on BP〈n〉 July 20, 2024 23 / 35



Proof.
Using E1-cell theory, we extend the structure map
MU(p) → (Ψl

MU(p) ∗) BP〈n〉 by a filtration along the structure map

MU(p) → BP〈n〉 to obtain the dashed map.

BP〈n〉
ΨBP〈n〉

%%# # # # # #

ι !! En

&&■
■■

■■
■■

■■
■

(Ψl
MU(p)

)∗ BP〈n〉

(Ψl
MU(p)

)∗ι

''
MU(p)

!!((❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

g

))●●●●●●●●●● f

**④④④④④④④④④
(Ψl

MU(p)
)∗En

We have a filtration

H(MU(p)) = 0 → Σ1(π1(H(BP〈n〉)) → Σ1(π1(H(BP〈n〉))⊕Σ3(π3(H(BP〈n〉)) → · · · →
"

i>0

Σ2i−1(π2i−1(H(BP〈n〉)) ∼= H(BP〈n〉)

where each fiber is π2i−1(H(BP〈n〉)) which, by the examples above, is a
finite sum of copies of Z(p).
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We take Xi to be a sum of copies of Σ2i−2MU(p), so we have a filtration

MU(p) = R0
r1−→ R1

r2−→→ · · · → R∞
∼=−→ BP〈n〉

as E1-MU(p)-algebra. Here Ri is obtained by Ri−1 via the lower pushout
square

⊕Σ2i−2MU(p)
!!

""

0

""

hi

++✷
✷
✷
✷
✷
✷
✷
✷
✷
✷
✷
✷
✷
✷

MU(p){⊕Σ2i−2MU(p)}
aug !!

""

MU(p)

gi

,,❁
❁

❁
❁

❁
❁

❁
❁

❁

""
Ri−1

fi−1 --

ri !! Ri

fi

..▼
▼

▼
▼

▼
▼ !! BP〈n〉 !! En

""

(Ψl)∗(BP〈n〉) !! (Ψl)∗(En)
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Given the commutative diagram with all solid arrows, we want to find a lift
fi . By the universal property of pushout, it suffices to find a lift gi . Again,
by the universal property of free object, it boils down to find a lift hi .
After simplifying the diagram, we see that we need to find a dashed lift,
which in this case amounts to find a nullhomotopy of
⊕Σ2i−2MU(p) → hfib((Ψl)∗ι).

hfib((Ψl)∗ι) =: F

""

⊕Σ2i−2MU(p)
!!

//❧❧❧❧❧❧❧

""

(Ψl)∗(BP〈n〉)

""

0 !!

hi
//❧❧❧❧❧❧❧❧❧ (Ψl)∗(En)

There exists a long exact sequence of homotopy group:

· · · → π2i−1(En) → π2i−2(F ) → π2i−2(BP〈n〉) ↩→ π2i−2(En) → · · ·

which suggest π2i−2(F ) = 0.
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BP〈n〉 as a Z-equivariant E1⊗A2-MU(p)
Ψ-algebra

Proposition

The underlying E1⊗A2-MU(p)-algebra of BP〈n〉 lifts to

BP〈n〉Ψ ∈ AlgE1 ⊗A2
(Mod(SpB Z;MU(p)

Ψ)).
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Proof.
We want to lift BP〈n〉 to a Z-equivariant (E1⊗A2)-MU(p)-algebra, so we
need to equip the Z-equivariant E1-MU(p)-algebra we constructed with a
unital multiplication that is compatible with the Z-equivariant structure.
Using E1-cell theory, we extend ▽ from a filtration along the left arrow to
the dashed arrow.

BP〈n〉Ψ
!

BP〈n〉Ψ ▽ !!

00❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚

BP〈n〉Ψ

BP〈n〉Ψ⊗MU(p)
BP〈n〉Ψ

//-------

By calculation, we have fibH(s) = H(BP〈n〉)⊗MU(p)
Ψ H(BP〈n〉) so its

homotopy groups are concentrated in positive even degrees.
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We can pick Xj = Σ2ki MU(p)
Ψ(j) for j < ki and have a filtration

BP〈n〉Ψ
#

BP〈n〉Ψ = R0 → R1 → · · · → R∞
∼=−→ BP〈n〉Ψ⊗MU(p)

BP〈n〉Ψ

Here Ri is obtained by Ri−1 via the lower pushout square

Σ2ki MU(p)
Ψ(j) !!

""

0

""

hi

11✵
✵
✵
✵
✵
✵
✵
✵
✵
✵
✵
✵
✵

MU(p)
Ψ{Σ2ki MU(p)

Ψ(j)} aug !!

""

MU(p)
Ψ

gi

22✾
✾

✾
✾

✾
✾

✾
✾

✾

""
Ri−1

fi−1 --

ri !! Ri

fi

##❑
❑

❑
❑

❑

BP〈n〉Ψ
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Similar to the last proof, the existence of a lift fi boils is equivalent to the
existence of a lift hi , which means the the composition of maps from
Σ2ki MU(p)

Ψ(j) to BP〈n〉Ψ is nullhomotopic. Note that in general we have
a exact sequence

MapCB Z(XΨX ,YΨY ) → MapC(X ,Y )
F−→ MapC(X ,Y )

where F (f )(x) = ΨX (x)f −ΨY f (x). This induces a long exact sequence

· · · → π1(MapC(X ,Y )) → π0(MapCB Z(XΨX ,YΨY ) → π0(MapC(X ,Y ))

→ π0(MapC(X ,Y )) → · · ·
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Take C = Mod(SpB Z;MUΨ
(p))),X = Σ2ki MU(p)

Ψ(j),Y = BP〈n〉. We have

π1(MapC(X ,Y )) = π2ki+1(BP〈n〉) = 0

so the middle map

π0(MapCB Z(XΨX ,YΨY )) → π0(MapC(X ,Y ))

is injective. By the forgetful-tensor up adjunction, an element
f ∈ MapC(X ,Y ) corresponds to α ∈ π2ki (BP〈n〉). Therefore, in this case

π0(MapCB Z(XΨX ,YΨY ) = ker(π0(MapC(X ,Y ))
F−→ π0(MapC(X ,Y ))

= ker(π2ki (BP〈n〉)
F−→ π2ki (BP〈n〉)).

We know Ψ acts on π2ki (MU(p)(j)) by multiplying by lki+j and Ψ acts on

π2ki (BP〈n〉) by lki . Since j ∕= ki , the image of F here is never 0, so
Map(Σ2ki MU(p)

Ψ(j),BP〈n〉) = 0.
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Locally unipotent action

Proposition (Corollary A.27, Appendix A)

Let C be a presentable stable category with a compact generator V . An
X ∈ CB Z is locally unipotent if and only if the Z-action on the homotopy
groups π0(MapC(Σ

mV ,X )) is locally unipotent for all m.
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Corollary

The constructed Adams operation on BP〈n〉 is locally unipotent in
p-compelete spectra after p-compeletion.

Proof.
We choose the Moore spectrum S /p to be the compact generators in the
category of p-compelete spectra and get a long exact sequence of
homotopy group

· · ·πm+1X
p−→ πm+1X → π0(Σ

m S /p,X ) → πmX
p−→ πmX → · · ·

Taking X = BP〈n〉, and we have π0(Σ
m S /p,BP〈n〉) = πm+1 BP〈n〉 /(p).

We know the homotopy groups of BP〈n〉 concentrate on degrees that are
multiple of 2p − 2, so Ψl acts by multiplying by lk(p−1) on π2k(p−1). By
Fermat’s theorem, the action is identity mod p.
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Putting the pieces together...

Proof. Note that Z×
p lies in the center of Gn, so Ψl commutes with the

action of µpn−1 ⋊ Gal(Fp). Therefore, there is an identification in
AlgE1

(SpB Z):

LT (n) BP〈n〉Ψ
ι !!

∼=
""

EΨ
n

∼=
""

(EΨ
n )hµpn−1⋊Gal(Fp) !! EΨ

n
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